5. DR-learner#
DR-learner is a two-stage doubly robust estimator for HTE estimation. Before Kennedy et al. 2020 [4], there are several related approaches trying to extend the doubly robust procedure to HTE estimation, such as [5, 6, 7]. Compared with the above three estimators, DR-learner is proved to be oracle efficient under some mild assumptions detailed in Theorem 2 of [4].
The basic steps of DR-learner is given below:
Step 1: Nuisance training:
(a) Using
(b) Using
Step 2: Pseudo-outcome regression:
Define
and regress it on covariates
# import related packages
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt;
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from causaldm.learners.CEL.Single_Stage import _env_getdata_CEL
from causaldm.learners.CEL.Single_Stage.DRlearner import DRlearner
import warnings
warnings.filterwarnings('ignore')
MovieLens Data#
# Get the MovieLens data
#import os
#os.chdir('/Users/alinaxu/Documents/CDM/CausalDM')
#MovieLens_CEL = pd.read_csv("./causaldm/data/MovieLens_CEL.csv")
MovieLens_CEL = _env_getdata_CEL.get_movielens_CEL()
MovieLens_CEL.pop(MovieLens_CEL.columns[0])
MovieLens_CEL = MovieLens_CEL[MovieLens_CEL.columns.drop(['Comedy','Action', 'Thriller'])]
MovieLens_CEL
user_id | movie_id | rating | age | Drama | Sci-Fi | gender_M | occupation_academic/educator | occupation_college/grad student | occupation_executive/managerial | occupation_other | occupation_technician/engineer | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 48.0 | 1193.0 | 4.0 | 25.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1 | 48.0 | 919.0 | 4.0 | 25.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
2 | 48.0 | 527.0 | 5.0 | 25.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
3 | 48.0 | 1721.0 | 4.0 | 25.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
4 | 48.0 | 150.0 | 4.0 | 25.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
65637 | 5878.0 | 3300.0 | 2.0 | 25.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
65638 | 5878.0 | 1391.0 | 1.0 | 25.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
65639 | 5878.0 | 185.0 | 4.0 | 25.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
65640 | 5878.0 | 2232.0 | 1.0 | 25.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
65641 | 5878.0 | 426.0 | 3.0 | 25.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
65642 rows × 12 columns
n = len(MovieLens_CEL)
# DR-learner for HTE estimation
np.random.seed(1)
outcome = 'rating'
treatment = 'Drama'
#controls = MovieLens_CEL.columns[userinfo_index]
controls = ['age', 'gender_M', 'occupation_academic/educator',
'occupation_college/grad student', 'occupation_executive/managerial',
'occupation_other', 'occupation_technician/engineer']
n_folds = 5
y_model = GradientBoostingRegressor(max_depth=2)
ps_model = LogisticRegression()
Rlearner_model = GradientBoostingRegressor(max_depth=2)
HTE_DR_learner = DRlearner(MovieLens_CEL, outcome, treatment, controls, y_model, ps_model)
HTE_DR_learner = HTE_DR_learner.to_numpy()
estimate with DR-learner
fold 1, testing r2 baselearner: 0.036, pslearner: 0.735
fold 2, testing r2 baselearner: 0.039, pslearner: 0.735
fold 3, testing r2 baselearner: 0.039, pslearner: 0.735
fold 4, testing r2 baselearner: 0.038, pslearner: 0.735
fold 5, testing r2 baselearner: 0.037, pslearner: 0.734
Let’s focus on the estimated HTEs for three randomly chosen users:
print("DR-learner: ",HTE_DR_learner[np.array([0,1000,5000])])
DR-learner: [ 1.05672212 -1.73726057 1.09360586]
ATE_DR_learner = np.sum(HTE_DR_learner)/n
print("Choosing Drama instead of Sci-Fi is expected to improve the rating of all users by",round(ATE_DR_learner,4), "out of 5 points.")
Choosing Drama instead of Sci-Fi is expected to improve the rating of all users by 0.3541 out of 5 points.
Conclusion: Choosing Drama instead of Sci-Fi is expected to improve the rating of all users by 0.3541 out of 5 points.
References#
Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 108(2):299–319, 2021.
Peter M Robinson. Root-n-consistent semiparametric regression. Econometrica: Journal of the Econometric Society, pages 931–954, 1988.
Edward H Kennedy. Optimal doubly robust estimation of heterogeneous causal effects. arXiv preprint arXiv:2004.14497, 2020
M. J. van der Laan. Statistical inference for variable importance. The International Journal of Biostatistics, 2(1), 2006.
S. Lee, R. Okui, and Y.-J. Whang. Doubly robust uniform confidence band for the conditional average treatment effect function. Journal of Applied Econometrics, 32(7):1207–1225, 2017.
D. J. Foster and V. Syrgkanis. Orthogonal statistical learning. arXiv preprint arXiv:1901.09036, 2019.